

The Energy Problem

Growing world population

The Energy Problem Energy Shortage

Increasing living standard:

Energy consumption per capita
(Source: Wikipedia)

Energy \rightarrow Joules (J)

Power $=$ Energy/Time \rightarrow Watts (W)

$$
\begin{gathered}
1 \mathrm{~W}=1 \mathrm{~J} / \mathrm{s} \\
1 \mathrm{kWh}=1 \mathrm{~kW} \times 1 \mathrm{~h}=3.6 \mathrm{MJ}
\end{gathered}
$$

The Energy Problem

Energy Shortage

Source: BP workbook of historical data

The Energy Problem

Global Temperature
Climate change

Newtor:

Chlorophyll Absorption Spectrum of Visible Light

The Sun is not yellow (or orange or red), - it's white.

Our Atmosphere (air is "clear" right?) The Earth's atmosphere scatters mainly the blue wavelengths, which then reflect back to us from all over the sky making the clear air appear blue.

The Earth
 of a combination of all wavelengths (colours)

This effect is even more. pronounced at sunset.

- Irradiance - power density - W/m²
- instantaneous
- Irradiation - energy density - kWh/m²
- Power integrated over time, psh (peak sun hours)

Direct Normal Solar Radiation
 (Two-Axis Tracking Concentrator)

The Seasons on Earth

Autumnal Equinox

The first day of Autumn in the Northern Hemisphere

- Perihelion - point in orbit where a planet is nearest the sun (Earth ~ January 3147 million km)
- Aphelion - point in orbit where a planet is furthest from the sun (Earth ~ July 4-152 million km)
- Seasons caused by tilt and not distance from sun (since southern hemisphere tilted towards sun when closest - receives slightly more energy from sun than Northern hemisphere)

Earth Declination

$$
\delta=23.45 \sin \left[\frac{360(\mathrm{n}-80)}{365}\right][\text { degrees }]
$$

Solar Altitude vs. Azimuth

