BRAE 470 Solar Photovoltaic System Engineering Photovoltaic Energy Conversion September 28, 2015

Dr. Doug Hall

drdouglaswhall@gmail.com

Outline

Monday, September 28

- 1. Semiconductors especially silicon
- 2. Electrons (and photons) in semiconductors
- 3. Basic components of a solar cell
- 4. Power generation from a solar cell
- 5. Equivalent circuit of a solar cell

Wednesday, September 30

- 1. How solar cells are fabricated
- 2. Why (and how) cells are made into modules
- 3. How modules are fabricated
- 4. Types of crystalline photovoltaic modules
- 5. Module Specs

What is a Semiconductor?

- Low resistivity => "conductor"
- High resistivity => "insulator"

e.g. metals

e.g. diamond, window glass

- Intermediate resistivity => "semiconductor"
 - conductivity lies between that of conductors and insulators
 - examples
 - ***** silicon
 - gallium arsenide
 - cadmium telluride
 - copper indium gallium diselenide (CIGS)

PV module market share by technology 2014 (Solarbuzz.com)

Silicon crystal structure – bond model

Silicon - simplified bond model

In pure silicon, each atom's 4 valence electrons are "shared" another atom. This sharing forms a covalent bonds – strong bonds that require significant energy to break

What happens when light is absorbed? - a bond is broken

What is with this hole stuff?

Electric Field

Valance band electrons can move into a valance band vacancy – but they move differently than conduction band electron and have to be treated separately

valance electrons (and conduction electrons)

Valance band vacancy = Hole

Doping a semiconductor

n-type p-type Doping typically at 10¹⁶ atoms/cm³

Outline

Monday, September 28

- 1. Semiconductors especially silicon
- 2. Electrons (and photons) in semiconductors
- 3. Basic components of a solar cell
- 4. Power generation from a solar cell
- 5. Equivalent circuit of a solar cell

Photo-generated electron and hole pairs diffuse randomly

semiconductor

Need selective electron and hole "membranes" to create a voltage and drive a current

Generation and recombination

Generation

∕—

₩

 E_{C}

 E_V

(b)

Radiative recombination

Non-radiative recombination at defects such as impurities, crystal structure defect grain boundaries, etc.

Outline

Monday, September 28

- 1. Semiconductors especially silicon
- 2. Electrons (and photons) in semiconductors

3. Basic components of a solar cell

- 4. Power generation from a solar cell
- 5. Equivalent circuit of a solar cell

Photovoltaic Cell - electric current from photons

In words:

- A photovoltaic cell is a large area <u>diode</u> with
 - an "emitter" that acts as an electron (or hole) membrane
 - a large volume of "base" material that absorbs photons, converting photon energy to electron & hole energy.
 - These electrons and holes defuse and separate when they pass through the membranes,
 - creating a current source, depending on the amount fo light absorbed in the base, that can drive power out of the diode.

PV cell current-voltage (I-V) – starts with a diode

spectrum = AM1.5

Standard equivalent circuit model of PV cell

Shockley diode equation

Using the PV Cell equivalent circuit model

- Find the maximum power point voltage, maximum power point current, and maximum output power of a 156 x 156 mm cell with equivalent circuit parameters in the chart below
 - when the sun has irradiance of the standard test conditions (1000 W/m²)

• V _{max} =	I _{max} =	P _{max} =	
for early in the n	norning when th	e irradiance is oi	nly 500 W/m ²
• V _{max} =	I _{max} =	P _{max} =	

 Find the maximum power point voltage, maximum power point current, and maximum output power at standard test conditions (1000W/m²) for cell made of the same material but of smaller area = 100 x 100 mm.

• V _{max} =	I _{max} =	P _{max} =
	J _L (mA/cm ² @ 1000 W/m ²)	38
	J _o (mA/cm2)	1.00E-10
Cell parameters	n	1
	т (К)	300
	R _p (W-cm²)	10,000
	$R_{\rm c}$ (W-cm ²)	1.2